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Tracer exchange in single-file systems (one-dimensional diffusional systems where the particles are
not able to pass each other) shows peculiar and interesting features which differ considerably from
that of transport diffusion or from the behaviour known from ordinary diffusional systems. A formal-
ism relating the tracer exchange curve (as the observable of the tracer exchange experiment) to the
residence time distribution (describing the intracrystalline diffusional mechanism) and the boundary
condition (describing the situation outside) is introduced. The formalism is guite general and valid
for any diffusional regime. Typical examples of the residence time distribution of a single-file system
can be inferred from the tracer exchange curves obtained in a previous study by numerical simula-
tions. Based on these examples, the tracer exchange curves for the single-file system subject to dif-
ferent boundary conditions (corresponding to a variety of experimental set-ups) are plotted and
discussed.
Key words: Single-file systems; Tracer exchange; Residence time distribution; Zeolites.

Let us consider diffusion of particles through a narrow channel-like pore. If the
diameter of the particles exceeds the radius of the pore, the particles are not able to
pass each other within the pore. The stochastic motion arising from this strong mu-
tual hindrance of the particles is known as single-file diffusion. Systems of this
type, e.g., occur in superionic conductors1 or in ion channels through biological
membranes2. Recently, the existence of single-file diffusion in various zeolites with
one-dimensional channel system has been confirmed by the Pulsed Field Gradient
(PFG) NMR measurements3.

As long as we are interested only in transport or collective diffusion (e.g., adsorption
or desorption processes), there is no difference between the single-file and normal one-
dimensional diffusion: Both the concentration profile and the mass current are insensi-
tive whether the particles may change their order or not4. Today, the behaviour of
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systems undergoing the normal or Fickian diffusion is well understood. As an example,
Crank5 considers the Fickian diffusion is a plane sheet (of a certain thickness in the
x-direction but infinite in the y- and z-directions) being in contact with a surrounding
well-stirred solution or gas phase. Since the sheet is infinite, only the one-dimensional
diffusion in the x-direction has to be taken into account. Crank5 gives, among many
other results, the time dependence of the amount of particles adsorbed by the sheet in
accordance with the time dependence of the particle concentration outside the sheet
which plays the role of a boundary condition.

A completely different situation, however, arises in case of the tracer diffusion where
the relative amount of distinguishable species of particles is considered. While in a
system behaving according to the Fickian diffusion (e.g., two- or three-dimensional
pore networks or matrices, as well as one-dimensional channels wide enough to allow
mutual passage of the molecules), the concentration of any of the species can be de-
scribed by the well-known results of the transport diffusion, single-file systems show
particular features.

In this paper, we present a formalism capable of describing the tracer exchange in single-
file systems. The system considered is the single-file analogue of the plane sheet given in
ref.5: an array of parallel identical single-file channels directed along the x-axis. Since any
particle exchange between adjacent channels is excluded, there is, a priori, no diffusion
along the y- or z-directions so that we do not need to assume that the sheet is infinite.
From now on, this array of channels will be referred to as crystal, irrespective whether
it is in fact a single crystal, a heap or bed of crystallites, a membrane, or any other
non-crystalline structure, as long as it contains identical channels. It is surrounded by a
well-stirred solution or gas phase in such a way that both ends of each of the channels
have contact to this surrounding space. The system is assumed to be in macroscopic
sorption equilibrium, i.e., the mean total amount of particles within the crystal does not
change, but the relative amount of the two distinguishable species varies with time
according to the given initial and boundary conditions. In analogy to ref.5, the scope of
our study is the determination of the tracer exchange curve γ(t) under different ex-
perimental conditions. The formalism used is quite general and remains valid if surface
resistances or additional particle interactions are introduced.

In chapter Theoretical, the basic equation is established. The first five sections of
chapter Results and Discussion consider several experimental set-ups, give the corres-
ponding boundary conditions, and show their influence on the time dependence of the
tracer exchange. Finally, in the sixth section the results are generalized to arrays of
unequal channels.
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THEORETICAL

Consider an individual diffusional channel of finite length with particle exchange at the
margins. Let there be two species of particles in the system, labelled A and B, which do
not differ in their transport behaviour.

To begin with, assume that the channel consists of N discrete sites. As in ref.6, we
define the following variables describing the state and the system dynamics:

Σi = 

1
0




  if site i is  


occupied
  vacant




  , (1)

τi =  time (duration) which the particle occupying site i
has already spent within the channel,       

(2)

Λi = 




λA

λB




  if site i is occupied by the  



A
B




 particle . (3)

At a given time t, the stochastic variable Σi gives the occupation of site i, while τi and
Λi give, provided site i is occupied by a particle (Σi = 1), the residence time and the
kind of this particle. The probability distributions of these stochastic variables are given
by the quantities

Θi = P(Σi = 1) , (4)

ϕi
∗(τ) dτ = P(Σi = 1, τ ≤ τi < τ + dτ) , (5)

ρi
∗ = P(Σi = 1, Λi = λA) . (6)

From these probabilities describing the situation at the individual sites, one gets quan-
tities referring to the whole channel:
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ϕ(τ) dτ = 

∑ 
i=1

N

ϕi
∗(τ) dτ

∑ 
i=1

N

Θi

  , (7)

the mean total relative amount of particles having spent a time between τ and τ + dτ
within the channel, where ϕ(τ) will be referred to as residence time distribution; and

ρ = 

∑ 
i=1

N

ρi
∗

∑ 
i=1

N

Θi

  ,

(8)

the mean relative amount of A particles in the channel.
It is understood that the sorption equilibrium has already maintained a time longer

than the residence time of any of the present particles. This implies that ϕ(τ) is a sta-
tionary distribution not varying with time. Moreover, this quantity is a sole property of
the diffusion mechanism in the channel (including the mechanism of the particle ex-
change between the channel and the surrounding space). In contrast, ρ may change with
time and depends both on the intracrystalline diffusion and on the development of the
ratio of the two species outside the channel. The connection between these functions
ρ(t) and ϕ(τ) can be established as follows.

If, at any time t, a particle is newly adsorbed from outside into the channel, the
stochastic variable Λ0 shall tell whether the particle is of A or B type, and we define the
probability

ρ0 = P(Λ0 = λA) (9)

that this new particle belongs to the A species. Since ϕι
∗(τ) dτ is the probability that site i is

occupied by a particle having been adsorbed a time between τ and τ + dτ ago, and ρ0(t – τ)
is the probability that a particle having been adsorbed a time τ ago is of A type, one
gets for the individual sites

ρi
∗(t) = ∫  

0

∞
ρ0(t − τ) ϕi

∗(τ) dτ ,   ∀i = 1,…N . (10)

According to Eqs (7) and (8) we have for the whole channel
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ρ(t) = ∫  
0

∞
ρ0(t − τ) ϕ(τ) dτ . (11)

This is our basic equation relating the relative amount ρ of A particles in the channel at
time t to the past development of the boundary condition, ρ0(t), and the properties of
the diffusional mechanism, represented by the intracrystalline residence time distribu-
tion ϕ(τ). All subsequent results follow thereof by special choices of the boundary
condition.

We stress that Eq. (11) does not refer to individual sites any more and is, therefore,
equally valid for discrete or continuous models of diffusion. Moreover, we did not have
to consider whether or not the diffusion proceeds according to single-file behaviour.
This means that Eq. (11) holds for any diffusional regime. The particularities of the
intracrystalline behaviour of the system are exclusively contained in the residence time
distribution ϕ(τ).

So far, we considered an individual channel. Nevertheless, Eq. (11) is valid for an
array of identical channels as well, because both ρ and ϕ are relative quantities, and the
boundary condition ρ0 is common to all channels (provided the phase surrounding the
crystal is well-stirred).

In the following, the general relation, Eq. (11), is applied to tracer exchange pro-
cesses. All these processes follow a common scheme: Before the starting time, t = 0,
there are only B particles in the system, i.e., ρ(t) = 0 for t < 0. This is ensured by the
condition

ρ0(t) = 0   for  t < 0 . (12)

At t = 0, the particle species in the surrounding phase is switched, where the particular
development of the boundary condition ρ0(t) depends on the experimental set-up. Since
the quantity ρ(t) monitors the progress of the exchange of the two particle species its
time dependence will be referred to as unnormalized tracer exchange curve. It starts at
ρ(0) = 0 and ultimately reaches the final value

ρ(∞) = ρ0(∞) =: g (13)

when the equilibrium of the species is attained. Following the usual convention, in all
figures of this paper, we give the (normalized) tracer exchange curve
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γ(t) := 
ρ(t)
g

(14)

which differs from ρ(t) by a simple normalization ensuring

γ(∞) = 1 . (15)

On calculating ρ(t), we will use its Laplace transform which simply is

ρ(s) = ρ0(s) ϕ(s) . (16)

(Both the Laplace transforms on the right-hand side surely exist because 0 ≤ ρ0 ≤ 1, Eq. (12),

and ∫  
0

∞
ϕ(τ) dτ = 1.) We will use Eq. (16) in two opposite ways. If the residence time

distribution ϕ of the diffusional system is known, one can compute the tracer exchange
curve for an arbitrary experimental condition. If, on the other hand, the tracer exchange
curve for special experimental conditions is known, one can infer the residence time
distribution of the crystal which, in turn, gives the tracer exchange curves for all other
cases. (Beyond the scope of this paper, the knowledge of ϕ is the key to other quantities
as well, e.g., the effectiveness factor of catalytic reactions6.)

RESULTS AND DISCUSSION

Constant Boundary Conditions

In the simplest tracer exchange experiment, the particle species in the surrounding
phase is, at the initial time t = 0, suddenly switched to pure A. Hereafter, it is kept pure,
e.g., by immediately removing all desorbing B particles. In our notation,

ρ
__

0(t) = 

0,   t < 0,
1,   t ≥ 0.

(17)

(The bar always indicates quantities referring to constant boundary conditions defined
in this way.) From Eqs (13) and (17) we have

g
_
 = 1 (18)
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which implies that, for constant boundary conditions, normalized and unnormalized
tracer exchange curves coincide. Inserting Eq. (17) into Eq. (11) yields

ρ
__

(t) = γ
_
(t) = ∫  

0

t

ϕ(τ) dτ ,   t ≥ 0 . (19)

If the residence time distribution ϕ(τ) is known, we can now compute the tracer
exchange curve according to Eq. (19). Since ϕ(τ) depends on all the peculiarities of the
system there is, of course, no general expression comprising all single-file systems one
could think of. In ref.6 we gave an exact derivation of ϕ(τ) which allows an analytical
solution for a discrete model of a single-file channel with the variable surface resist-
ance and the attractive particle–particle interactions. Unfortunately, the procedure is
numerically very expensive in real applications. Since, however, the scope of this paper
is only to illustrate the principal situation, we might restrict ourselves to a typical
example. To do this, we go the other way round and start with curves of γ

_
(t) which we

had obtained previously by Monte-Carlo simulations7. These simulations revealed that
the tracer exchange curves subject to constant boundary conditions can, depending on
the particular choice of the system parameters, be approximated by one of the follow-
ing analytical expressions:

γ
_

sf(t) = 1 − 
6
π2 ∑ 

i=1

∞
1
i2

 exp 



− 

π2

15
 i2 

t
τintra




 , (20)

γ
_

nd(t) = 1 − 
8
π2 ∑ 

i=1
odd

∞
1
i2

 exp 



− 

π2

12
 i2 

t
τintra




 , (21)

γ
_

exp(t) = 1 − exp 



− 

t
τintra




 . (22)

(Though the index “sf” stands for single-file diffusion, the index “nd” for normal diffu-
sion, and the index “exp” for exponential, these indices are, first of all, solely mean as
labels for the respective analytical expressions.) Here we used the intracrystalline mean
lifetime τintra defined as8

τintra = ∫  
0

∞
(1 − γ

_
(t)) dt ; (23)

inserting Eq. (19) into this definition gives, after some rearrangement of the integra-
tion6, the expected identity
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τintra = ∫ τ
0

∞
 ϕ(τ) dτ . (24)

The quantity τintra is a property of the diffusional mechanism: It is determined by the
channel length, the rate of the intracrystalline motion, the interactions of the particles,
possible surface resistances, etc.6,7. According to the simulations, the quantity τintra al-
ready represents the main dependence of the tracer exchange curve on these para-
meters; if the time axis is scaled by τintra, the remaining differences between the curves
are rather small (see Fig. 1). Single-file systems with strong surface resistances are best
approximated by γ

_
exp(t), γ

_
nd(t) is, among other cases, the low-concentration limit, and γ

_
sf(t)

approximates cases where the mutual hindrance of the particles is pronounced7. Thus,
we might refer to γ

_
sf(t) as the prototype of the tracer exchange curve of single-file

systems subject to constant boundary conditions.
By the way, γ

_
nd(t) is exactly the expression for the Fickian diffusion system5. How-

ever, this does not mean that there is only little difference between normal and single-
file tracer exchange: The intracrystalline mean lifetime of single-file systems is, in
general, orders of magnitude larger than that of Fickian systems. It merely means that
the shape of the tracer exchange curve is not very sensitive to the differences in the
diffusional regime7. We again stress, however, that the expression γ

_
nd(t) applies not

only to Fickian processes but approximates some single-file processes as well.
With γ

_
(t) chosen, we can now determine the residence time distribution by differen-

tiation of Eq. (19),

ϕ(t) = 
d
dt

γ
_
(t) . (25)

1.0

0.8

0.6

0.4

0.2

0.0
0                  2                4                6                8              10

γ
_
(t)

t/τintra

FIG. 1
Analytical curves approximating the
tracer exchange curve of a single-file sys-
tem subject to constant boundary condi-
tions: −−−−  γ

_
sf, − − − − γ

_
nd, . . . . γ

_
exp
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Figure 2 shows, in a semi-log plot, the results corresponding to the three examples of
Fig. 1. In the long-time region, all curves are simple exponentials α exp (−at / τintra)
(only the first terms of the sums survive); the respective factor a in the exponent (i.e. the
slope in the semi-log representation) differs by the ratio π2/15 : π2/12 : 1 ≈ 0.66 : 0.82 : 1
according to which of the curves is used.

While many tracer exchange experiments observe the tracer exchange curve γ(t), Eic
and Ruthven9 developed an experimental technique for the measurement of intracrystal-
line diffusivity (the so-called zero length column technique, ZLC) which is based on
the determination of the time derivative of the desorption9 or tracer exchange10 curve.
Since the experimental set-up ensures constant boundary conditions, it turns out that
this technique measures the residence time distribution ϕ(t) directly.

For further reference we give the Laplace transform of Eq. (25):

ϕ(s) = s γ
_
(s) . (26)

This is true only because γ
_
 obeys, per definition, the initial condition γ

_
(t = 0) = 0.

Exponentially Varying Boundary Conditions

As pointed out by Crank5, in real experiments, it is often impossible to switch the
particle species outside the channel instantaneously from pure B to pure A. Instead, one
might assume an exponential transition. Moreover, one should allow for the case that
the transition switches to an experimentally given ratio g between the two species in-
stead of pure A. Thus we get

ρ0(t) = 

0,
g(1 − exp (− βt)),   

t < 0,
t ≥ 0.

(27)

1    

0.1

0.01

0.001
0                  2                4                6                8              10

ϕ(τ)τintra

τ/τintra

FIG. 2
Intracrystalline residence time distribu-
tion ϕ(τ) of a single-file system as ob-
tained in terms of Eq. (25) from the
choices of γ

_
 shown in Fig. 1: −−−− based

on γ
_

sf, − − − −  based on γ
_

nd , . . . . based
on γ

_
exp
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Inserting the Laplace transform ρ0(s) of this boundary condition into Eq. (16) gives

ρ(s) = g 



1
s
 − 

1
s + β




 ϕ(s) . (28)

Once the tracer exchange curve subject to constant boundary conditions is known we
obtain by combining Eqs (26) and (28)

ρ(s) = g 



1 − 

s
s + β




 γ
_
(s) . (29)

According to the considerations in the previous section, we assume that γ
_
(t) is given by

γ
_

sf(t) due to Eq. (20). Figure 3 shows the time dependence γ(t) = ρ(t)/g for various
values of the transition rate β (in units of τintra

−1 ). The curves have been obtained by the
numerical Laplace and inverse Laplace transformation according to Eq. (29). The value g
cancels by the normalization. The case of an infinite transition rate, β = ∞, recovers
constant boundary conditions.

Linearly Increasing Boundary Conditions

Exponential boundary conditions are not the only possibility to describe the switching
processes starting at t = 0. Instead, one might assume a linearly increasing relative
amount of A particles outside the crystal as it was observed in some sorption experi-
ments11. If ρ0(t) increases linearly during the time interval 0 … tδ up to a given fraction
g and then remains constant, one can write

1.0

0.8

0.6

0.4

0.2

0.0
0                 2                4                6                8              10

γ(t)

t/τintra

FIG. 3
Tracer exchange curve of a single-file
system subject to exponentially varying
boundary conditions (Eq. (27)) for dif-
ferent values of the transition rate coef-
ficient β. The parameter of the
representation is the scaled rate B =
(βτintra): −−−− B → ∞, − − − −  B = 10,
. . . . B = 1, − . − . − . B = 0.1
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ρ0(t) = 







0,
g t/tδ,
g,

   
t < 0,
0 ≤ t < tδ,
t ≥ tδ.

(30)

The Laplace transformation of ρ0(t) and Eq. (16) yields

ρ(s) = 
g
tδ

 
1 − exp (− stδ)

s2  ϕ(s) . (31)

As before, we use Eq. (26) to relate the considered process to that with constant
boundary conditions,

ρ(s) = g 
1 − exp (− stδ)

stδ
 γ
_
(s) , (32)

and set γ
_
 = γ

_
sf. The (normalized) tracer exchange curve γ(t) = ρ(t)/g for different values

of the transition time tδ (in units of τintra) is plotted in Fig. 4. For tδ = 0.01 τintra or less,
the curves already coincide with that of tδ = 0 (constant boundary conditions).

Tracer Exchange from a Finite Reservoir

Constant boundary conditions could be maintained if the crystal is connected to an
infinite particle reservoir, which, at time t = 0, is filled with A particles. Now we reduce
the mean total number of particles in the reservoir to a finite value R. Let the mean total
number of particles in the crystal be C. The value of ρ0(t), unknown for t ≥ 0, can be
obtained from the particle balance equation

1.0

0.8

0.6

0.4

0.2

0.0
0                 2                4                6               8              10

γ(t)

t/τintra

FIG. 4
Tracer exchange curve of a single-file
system subject to linearly increasing
boundary conditions (Eq. (30)) for dif-
ferent values of the transition time tδ.
The parameter of the representation is
the scaled transition time T = (tδ/τintra):
−−−− T = 0, − − − −  T = 0.1, . . . . T = 1,
− . − . − . T = 10
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Rρ0(t) + Cρ(t) = R = const.     (t ≥ 0) . (33)

Equation (33) expresses the fact that the total number of A particles in the system, i.e.,
the sum of the numbers of A particles in the reservoir, Rρ0(t), and in the crystal, Cρ(t),
is constant for all times t. This constant is given by the initial value at time t = 0,
namely the capacity R of the reservoir. Writing Rρ0(t) we assume that the reservoir is
well-stirred so that any particle in it has equal probability to be adsorbed into the crys-
tal. This gives

ρ0(t) = 







0,                  t < 0,

1 − 
C
R

 ρ(t),   t ≥ 0,
(34)

or, by the Laplace transformation,

ρ0(s) = 
1
s
 − 

C
R

 ρ(s) . (35)

If we introduce the relative reservoir capacity

ν = 
R
C

(36)

we obtain, on combining Eqs (16) and (35), the final result

ρ(s) = 
1
s
 

ϕ(s)
1 + ϕ(s)/ν . (37)

In the limit t → ∞, the system reaches equilibrium of the ratio of the particle species
between crystal and reservoir, cf. Eq. (13). From the balance Eq. (33), we easily com-
pute

g = 
1

1 + 1/ν . (38)

As before, we get from Eqs (26) and (37)

ρ(s) = 
γ
_
(s)

1 + sγ
_
(s)/ν . (39)
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This equation relates, though in Laplace language, the unnormalized tracer exchange
curve of the system with arbitrary reservoir capacity to that of the system with infinite
reservoir (constant boundary conditions). It can again be evaluated numerically. Figure 5
shows the resulting curves γ(t) = ρ(t)/g. Their validity was checked by the comparison
with Monte-Carlo simulations similar to that reported in ref.7.

The question remains whether the finite reservoir enhances the sensitivity of the
shape of the exchange curve to the diffusional mechanism. Figure 6 compares the
curves for the case ν = 0.1 when γ

_
(t) is chosen to be either γ

_
exp(t), γ

_
nd(t), or γ

_
sf(t).

Compared with Fig. 1, the differences between the curves are indeed much more pro-
nounced. This confirms the expected behaviour: The smaller the capacity of the reser-
voir, the greater the influence of the intracrystalline processes on the reservoir and,
consequently, on ρ0, which, in turn, influences the tracer exchange curve.

Tracer Exchange Between Two Different Diffusional Systems

In the previous section, the reservoir was assumed to be represented by the well-stirred
surrounding space, i.e., the diffusional processes within the reservoir are assumed to be
much faster than those within the crystal. Now we consider a more general process
involving tracer exchange between two different crystals being in contact via a well-
stirred solution or gas phase. The experimental set-up is assumed as follows:

At t < 0, the two crystals, each surrounded by a certain space, are separated from
each other. As before, both crystals are in sorption equilibrium with their respective
surroundings. Moreover, the total particle concentrations in the two surrounding spaces
are identical. The investigated crystal and its surrounding space are purely filled with B
particles; let there be an amount C of particles in the crystal and SC outside. Similarly,
the second crystal, which will be referred to as reservoir crystal, contains an amount R
of particles and its space SR, all of A type.

1.0

0.8

0.6

0.4

0.2

0.0
0                 1                2                3                4               5

γ(t)

t/τintra

FIG. 5
Tracer exchange curve of a single-file
system coupled with a well-stirred par-
ticle reservoir of different capacity. The
parameter of the representation is the
relative reservoir capacity ν = R/C:
−−−− ν → ∞, − − − −  ν = 10, . . . . ν = 1,
− . − . − . ν = 0.1
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At t = 0, the separation wall between the two spaces is removed so that now both
crystals are surrounded by a common, again well-stirred, space providing a particle
exchange. The changes of the ratio of the particle species within the investigated crystal
are observed.

Let us assume that the quantities ϕ, ρ, and ρ0 refer, as before, to the investigated
crystal while the correponding quantities referring to the reservoir crystal will be
denoted by a tilde, ϕ∼, ρ~ and ρ~0. For mathematical reasons, we have to define ρ~ and ρ~0

as the relative amounts of B particles (rather than A particles) in the reservoir crystal or
its surrounding space, respectively, because only in this way we have ρ~(t) = ρ~0(t) = 0 for
t < 0 which is the necessary condition for the existence of their Laplace transforms.
Then we can write an additional equation corresponding to Eq. (16) valid for the reser-
voir crystal:

ρ~(s) = ρ~0(s) ϕ~(s) . (40)

After removing the separation wall, there is a homogeneous ratio of the particle species
throughout the unified space, thus

ρ~0(t) = 




0,                  t < 0,
[1 − ρ0(t)],   t ≥ 0. (41)

Further, the system has to obey a particle balance (constant number of A particles),

R [1 − ρ~(t)] + (SR + SC) ρ0(t) + Cρ(t) = R + SR = const.     (t ≥ 0) , (42)

1.0

0.8

0.6

0.4

0.2

0.0
0                0.2            0.4             0.6             0.8             1.0

γ(t)

t/τintra

FIG. 6
Tracer exchange curve of a single-file
system coupled with a particle reservoir
of relative capacity ν = 0.1. The different
curves correspond to the three different
approximations considered in Fig. 1:
−−−− based on γ

_
sf, − − − −  based on γ

_
nd,

. . . . based on γ
_

exp
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which yields

ρ0(t) = 







0,                               t < 0,
Rρ~(t) + SR − Cρ(t)

SR + SC
,   t ≥ 0.

(43)

The Laplace transforms of the boundary conditions are

ρ~0(s) = 
1
s
 − ρ0(s) (44)

and

(SR + SC) ρ0(s) = R ρ~(s) + SR
1
s
 − C ρ(s) . (45)

Combining Eqs (16), (40), (44), and (45) gives

ρ(s) = 
1
s
 

(R ϕ~(s) + SR) ϕ(s)
R ϕ~(s) + SR + SC + C ϕ(s) . (46)

The long-time behaviour is obtained from the balance equation (42) and the equilibrium
[1 − ρ~(∞)] = [1 − ρ~0(∞)] = ρ0(∞) = ρ(∞) = g (generalization of Eq. (13)) to yield

g = 
R + SR

R + SR + SC + C
 . (47)

In order to reduce the variety of parameters in Eq. (46), we assume that the number
of particles in the surrounding phase is negligible in comparison with that in the crys-
tals, SR + SC << R + C, and set SR = SC = 0. On using the definition equation (36), we
get

ρ(s) = 
1
s
 

ϕ~(s) ϕ(s)
ϕ~(s) + ϕ(s)/ν . (48)

Moreover, both crystals shall be of equal capacity, R = C or ν = 1. Equation (48) is still
rather general: One may choose arbitrary functions for the residence time distributions
of the two crystals. As an example, we here assume that the investigated crystal shows
single-file behaviour which could be described by ϕ(s) = sγ

_
sf(s,τintra) (cf. Eq. (26)),

while the reservoir crystal is assumed to behave due to normal diffusion which implies
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ϕ∼(s) = sγ
_

nd(s,τ
~

intra) with τ~intra << τintra. The unnormalized tracer exchange curve for this
special case is thus given as

ρ(s) = 
γ
_

nd(s,τ
~

intra) γ
_

sf(s,τintra)
γ
_

nd(s,τ
~

intra) + γ
_

sf(s,τintra)
 . (49)

This decision done, the only free parameters are the two mean residence times, and we
define their ratio as

ψ = 
τ~intra

τintra
 . (50)

Numerical results according to this example for different values of the ratio ψ are given
in Fig. 7. The curve for ψ = 0.01 already coincides with that of the well-stirred reser-
voir (cf. Fig. 5, ν = 1), i.e., in this case the diffusional processes within the reservoir are
fast enough that their influence is negligible. In contrast, in the case ψ = 10, the beha-
viour is mostly determined by the reservoir rather than by the investigated crystal. For
ψ = 1, i.e., for equal mean residence times of reservoir and crystal, the resulting curve
is sort of an average between γ

_
sf(t) and γ

_
nd(t).

Note two further consequences of the more general relation Eq. (48). First, the well-
stirred reservoir could be described by ϕ∼(t) = δ(t) with the Laplace transform ϕ∼(s) = 1.
Inserting this into Eq. (48) indeed recovers Eq. (37). Second, in the limit ν → ∞, Eq. (48)
approaches

ρ(s) = 
1
s
 ϕ(s) (51)

1.0

0.8

0.6

0.4

0.2

0.0
0                 2                 4               6                8              10

γ(t)

t/τintra

FIG. 7
Tracer exchange curve of a single-file
crystal coupled with a crystal reservoir
undergoing normal diffusion. The
graphs correspond to different ratios ψ
between the mean residence times of the
two crystals: −−−− ψ = 0.01, − − − − 
ψ = 0.1, . . . . ψ = 1, − . − . − . ψ = 10
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which is the Laplace transform of the tracer exchange curve ρ
__
(t) for constant boundary

conditions (see Eq. (19)). This means that in case of an infinite reservoir (ensuring
constant boundary conditions), the tracer exchange curve is independent of the diffu-
sional properties of the reservoir.

Channels that are not Identical

The basic equation (11), derived for an individual channel, could also be applied to an
array of arbitrarily many, but identical, channels. Many real systems already mentioned
in the introduction, e.g., a crystal with parallel faces or a membrane of constant thick-
ness, can be assumed to represent such an array. Other examples, however, such as a
bed of crystallites of different sizes, a membrane of varying thickness, or an irregularly
shaped crystal, violate the condition of identity of the channels. In the following, we
give the generalization of the results of this paper allowing for channels that are not
identical.

For simplicity, we assume that the length L of the individual channels of the array is
the only parameter describing their dissimilarity. Let f(L) be the distribution of L, i.e.,
if the crystal consists of M channels, M f(L) dL of them have a length between L and
L + dL. Let F(L) be the mean total number of particles in an individual channel of
length L. Then we might define the concentration

c(L) = 
F(L)

L
 . (52)

In the general case, this concentration depends on the channel length L, e.g., in a single-
file system with attractive particle–particle interaction6. Let the relative amount of A
particles in a channel of length L be ρ(t,L) while ρ(t) is understood to refer to the
crystal as a whole. With these quantites defined, we have

C = ∫  
0

∞
Lc(L) M f(L) dL (53)

for the mean total number of particles in the whole crystal while the mean number of A
particles is

Cρ(t) = ∫  
0

∞
ρ(t,L) Lc(L) M f(L) dL . (54)

Further, we write Eq. (11) with explicit dependence on the length L of the channel
considered
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ρ(t,L) = ∫  
0

∞
ρ0(t − τ) ϕ(τ,L) dτ . (55)

By dividing Eq. (54) by Eq. (53) and inserting Eq. (55) we obtain

ρ(t) = ∫  
0

∞
ρ0(t − τ) 

∫  
0

∞
ϕ(τ,L) Lc(L) f(L) dL

∫  
0

∞
Lc(L) f(L) dL

 dτ . (56)

This suggests the definition of the residence time distribution of the crystal

ϕ(t) = 
∫  

0

∞
ϕ(τ,L) Lc(L) f(L) dL

∫  
0

∞
Lc(L) f(L) dL

(57)

as the weighted average of the residence time distributions of the individual channels.
This result confirms that the introduced residence time distribution is a well-defined
quantity for arbitrary arrays of channels, too. As before, it may be inferred from the
tracer exchange curve obtained under known experimental conditions or, if all neces-
sary information is available, calculated in terms of Eq. (57). Then all the results
presented in this paper may be used in their unchanged form.

SYMBOLS

B scaled transition rate (β τintra)
C capacity (i.e., mean number of guest particles in sorption equilibrium) of crystal inves-

tigated
c(L) concentration in channel of length L, m–1

F(L) mean total number of particles in channel of length L
f(L) distribution (probability distribution) of L in crystal, m–1

g equilibrium value of the ratio of two particle species in tracer exchange experiment
after infinite time, see Eq. (13)

L channel length, m
M number of channels in crystal
N number of sites per channel in discrete model
R reservoir capacity
SC capacity of space surrounding crystal investigated
SR capacity of space surrounding reservoir crystal
s independent variable of Laplace transforms, s–1

T scaled transition time (tδ/τintra)
t time, s
tδ time interval during which linearly increasing boundary condition varies, s
β transition rate of exponentially varying boundary conditions, s–1

γ(t) (normalized) tracer exchange curve, see Eq. (14)
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γ
_
(t) tracer exchange curve under constant boundary conditions, see Eq. (19)

γ
_

sf(t) analytical expression, see Eq. (20), approximating γ
_
(t) for certain single-file systems

where mutual hindrance of particles is pronounced; in this paper chosen as prototype
for single-file system

γ
_

nd(t) analytical expression, see Eq. (21), approximating γ
_
(t) for certain single-file systems

(e.g., with low particle density) as well as for systems undergoing normal diffusion
γ
_

exp(t) analytical expression, see Eq. (22), approximating γ
_
(t) for systems with strong surface

resistances
Θi probability distribution of Σi, see Eq. (4)
Λi kind of particle occupying site i, see Eq. (3), {λA,λB}
Λ0 kind of newly adsorbed particle, {λA,λB}
λA realization of Λi or Λ0 in case of type A particle
λB realization of Λi or Λ0 in case of type B particle
ν relative reservoir capacity, see Eq. (36)
ρ(t) mean relative amount of A particles in crystal, see Eq. (8); its time dependence gives

unnormalized tracer exchange curve
ρ~(t) mean relative amount of B particles in reservoir crystal
ρi probability distribution of Λi, see Eq. (6)
ρ0 probability distribution of Λ0, see Eq. (9), acting as boundary condition
ρ
__

0 constant boundary condition, see Eq. (17)
ρ~0 probability that particle newly adsorbed into reservoir crystal is of type B.
Σi occupation of site i, see Eq. (1)
τ residence time, s
τi residence time of particle occupying site i, see Eq. (2), s
τintra intracrystalline mean lifetime, see Eq. (23), s
τ~intra intracrystalline mean lifetime of reservoir crystal, s
ϕ(t) residence time distribution, see Eq. (7), s–1

ϕ~(τ) residence time distribution of reservoir crystal, s–1

ϕι∗(τ) probability distribution of τi, see Eq. (5), s–1

ψ ratio between mean residence times of investigated and reservoir crystals, see Eq. (50)

We are obliged to the Studienstiftung des Deutschen Volkes and to the Deutsche Forschungsgemein-
schaft (SFB 294) for financial support of this work.

REFERENCES

 1. Richards P. M.: Phys. Rev. B 16, 1393 (1977).
 2. Hodgkin A. L., Keynes R. D.: J. Phys. 128, 91 (1955).
 3. Gupta V., Nivarthi S. S., McCormick A. V., Davis H. T.: Chem. Phys. Lett. 247, 596 (1995);

Kukla V., Kornatowski J., Demuth D., Girnus I., Pfeifer H., Rees L., Schunk S., Unger K.,
Karger J.: Science 272, 702 (1996); Hahn K., Karger J., Kukla V.: Phys. Rev. Lett. 76, 2762
(1996).

 4. Karger J., Petzold M., Pfeifer H., Ernst S., Weitkamp J.: J. Catal. 136, 283 (1992).
 5. Crank J.: Mathematics of Diffusion. Oxford University Press, London 1956.
 6. Rodenbeck C., Karger J., Hahn K.: Phys. Rev. E, in press.
 7. Rodenbeck C., Karger J., Hahn K.: J. Catal. 157, 656 (1995).

Theory of Tracer Exchange 1013

Collect. Czech. Chem. Commun. (Vol. 62) (1997)



 8. Barrer R. M.: Zeolites and Clay Minerals as Sorbents and Molecular Sieves. Academic Press,
London 1978.

 9. Eic M., Ruthven D. M.: Zeolites 8, 40 (1988).
10. Hufton J. R., Brandani S., Ruthven D. M.: Proc. 10th Int. Zeolite Conf., Garmisch, July 1994

(J. Weitkamp J., H. Karge, H. Pfeifer and W. Holderich, Eds), Vol. 84, p. 1323. Elsevier,
Amsterdam 1994.

11. Schumacher R., Lorenz P., Karge H. G.: Proc. 11th Int. Zeolite Conf., Seoul, 1996, in press.

1014 Rodenbeck, Karger, Hahn:

Collect. Czech. Chem. Commun. (Vol. 62) (1997)


