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Tracer exchange in single-file systems (one-dimensional diffusional systems where the partic
not able to pass each other) shows peculiar and interesting features which differ considerabl
that of transport diffusion or from the behaviour known from ordinary diffusional systems. A for
ism relating the tracer exchange curve (as the observable of the tracer exchange experimen
residence time distribution (describing the intracrystalline diffusional mechanism) and the bou
condition (describing the situation outside) is introduced. The formalism is guite general and
for any diffusional regime. Typical examples of the residence time distribution of a single-file sy
can be inferred from the tracer exchange curves obtained in a previous study by numerical :
tions. Based on these examples, the tracer exchange curves for the single-file system subjec
ferent boundary conditions (corresponding to a variety of experimental set-ups) are plotte
discussed.
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Let us consider diffusion of particles through a narrow channel-like pore. If
diameter of the particles exceeds the radius of the pore, the particles are not :
pass each other within the pore. The stochastic motion arising from this stron
tual hindrance of the particles is known siagle-file diffusion Systems of this
type, e.g, occur in superionic conductdrer in ion channels through biologica
membrane$ Recently, the existence of single-file diffusion in various zeolites w
one-dimensional channel system has been confirmed by the Pulsed Field Gr
(PFG) NMR measurements

As long as we are interested only in transport or collective diffugi@y adsorption
or desorption processes), there is no difference between the single-file and norm:
dimensional diffusion: Both the concentration profile and the mass current are in:
tive whether the particles may change their order of. fdday, the behaviour o

* Presented at th8ymposium on Diffusion in Zeolites and Other Microporous Materials at the twe
CHISA'96 Congress, Prague, August 25-30, 1996.
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systems undergoing the normal or Fickian diffusion is well understood. As an exa
Crank considers the Fickian diffusion is a plane sheet (of a certain thickness i
x-direction but infinite in they- and zdirections) being in contact with a surroundir
well-stirred solution or gas phase. Since the sheet is infinite, only the one-dimen
diffusion in thex-direction has to be taken into account. CPagikes, among many
other results, the time dependence of the amount of particles adsorbed by the s
accordance with the time dependence of the particle concentration outside the
which plays the role of boundary condition

A completely different situation, however, arises in case ofrtfeer diffusionwhere
the relative amount of distinguishable species of particles is considered. While
system behaving according to the Fickian diffusierg{ two- or three-dimensional
pore networks or matrices, as well as one-dimensional channels wide enough to
mutual passage of the molecules), the concentration of any of the species can
scribed by the well-known results of the transport diffusion, single-file systems
particular features.

In this paper, we present a formalism capable of describing the tracer exchange in
file systems. The system considered is the single-file analogue of the plane sheet ¢
refS: an array of parallel identical single-file channels directed along-éxés. Since any
particle exchange between adjacent channels is excluded, thegristi, no diffusion
along they- or zdirections so that we do not need to assume that the sheet is in
From now on, this array of channels will be referred targstal irrespective whether
it is in fact a single crystal, a heap or bed of crystallites, a membrane, or any
non-crystalline structure, as long as it contains identical channels. It is surrounde
well-stirred solution or gas phase in such a way that both ends of each of the ch
have contact to this surrounding space. The system is assumed to be in macre
sorption equilibriumi.e., the mean total amount of particles within the crystal does
change, but theelative amount of the two distinguishable species varies with ti
according to the given initial and boundary conditions. In analogy ) teé scope of
our study is the determination of thecer exchange curvgt) under different ex-
perimental conditions. The formalism used is quite general and remains valid if st
resistances or additional particle interactions are introduced.

In chapter Theoretical, the basic equation is established. The first five sectic
chapter Results and Discussion consider several experimental set-ups, give the
ponding boundary conditions, and show their influence on the time dependence
tracer exchange. Finally, in the sixth section the results are generalized to arr
unequal channels.
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THEORETICAL

Consider an individual diffusional channel of finite length with particle exchange a
margins. Let there be two species of particles in the system, labelled A and B, wh
not differ in their transport behaviour.

To begin with, assume that the channel consistN dfscrete sites. As in réf.we
define the following variables describing the state and the system dynamics:

_og.. .. .. [bccupied
5= E)E if sitei is E vacant% , (@h)
T; = time (duration) which the particle occupying dite (2

has already spent within the channel,

A0
N = %\AD if sitei is occupied by th%%particle. ¢)]
B[ a

At a given timet, the stochastic variabl® gives theoccupationof sitei, while t; and
N; give, provided siteé is occupied by a particle(= 1), theresidence timeand the
kind of this particle. The probability distributions of these stochastic variables are ¢
by the quantities

0,=PF =1), @
OHT) dt=PE =1,T<T,<T+d), ©®)
PP=PEZ, = 1,A =),) . ©)

From these probabilities describing the situation at the individual sites, one gets
tities referring to the whole channel:
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Z oHT) dr

o() dr =", @)
o

'MZ

i=1

the mean total relative amount of particles having spent a time betwaeat + dt
within the channel, wher(t) will be referred to asesidence time distributigrand

p="
2@ ®

i=1

the mean relative amount & particles in the channel

It is understood that thsorption equilibriumhas already maintained a time long
than the residence time of any of the present particles. This implie¢(i)as asta-
tionary distribution not varying with time. Moreover, this quantity is a sole propert)
the diffusion mechanism in the channel (including the mechanism of the particl
change between the channel and the surrounding space). In cgninast,change with
time and depends both on the intracrystalline diffusion and on the development
ratio of the two species outside the channel. The connection between these ful
p(t) and¢(t) can be established as follows.

If, at any timet, a particle is newly adsorbed from outside into the channel,
stochastic variabld, shall tell whether the particle is of A or B type, and we define
probability

Po=PNg=2An) 9

that this new particle belongs to the A species. Spat® drt is the probability that siteis
occupied by a particle having been adsorbed a time betwamit + dt ago, ang(t — 1)
is the probability that a particle having been adsorbed a tiago is of A type, one
gets for the individual sites

pH(1) :jo Pot—T) dHT) dr, Ti=1,..N. (10
According to Egs®) and @) we have for the whole channel
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P = polt =) () . v

This is our basic equation relating the relative amguat A particles in the channel a
timet to the past development of the boundary conditp(t), and the properties o
the diffusional mechanism, represented by the intracrystalline residence time dis
tion ¢(1). All subsequent results follow thereof by special choices of the boun
condition.

We stress that Eqll) does not refer to individual sites any more and is, theref
equally valid for discrete or continuous models of diffusion. Moreover, we did not |
to consider whether or not the diffusion proceeds according to single-file beha
This means that Eq1Q) holds for any diffusional regime. The particularities of t
intracrystalline behaviour of the system are exclusively contained in the residence
distribution (7).

So far, we considered an individual channel. Nevertheless,1Bpig( valid for an
array of identical channels as well, because pathd¢ are relative quantities, and th
boundary conditiorp, is common to all channels (provided the phase surrounding
crystal is well-stirred).

In the following, the general relation, EdL1y, is applied to tracer exchange prt
cesses. All these processes follow a common scheme: Before the starting=tide,
there are only B particles in the systam,, p(t) = O fort < 0. This is ensured by the
condition

Pe() =0 fort<O. 12

At t = 0, the particle species in the surrounding phase is switched, where the par
development of the boundary conditipg(t) depends on the experimental set-up. Sir
the quantityp(t) monitors the progress of the exchange of the two particle specie
time dependence will be referred tolamormalized tracer exchange curvestarts at
p(0) = 0 and ultimately reaches the final value

P() = po®) =1 g (13

when the equilibrium of the species is attained. Following the usual convention,
figures of this paper, we give tlfpormalized) tracer exchange curve

Collect. Czech. Chem. Commun. (Vol. 62) (1997)



1000 Rodenbeck, Karger, Hahn:

P
v ="y (14)

which differs fromp(t) by a simple normalization ensuring

Y(@)=1. 19

On calculatingp(t), we will use its Laplace transform which simply is

P(S) = Po(S) §(9) - (16)

(Both the Laplace transforms on the right-hand side surely exist becayge<@, Eq. (2),
andJ’ ¢(1) dt =1) We will use Eq. 16) in two opposite ways. If the residence tin
0

distribution¢ of the diffusional system is known, one can compute the tracer exch
curve for an arbitrary experimental condition. If, on the other hand, the tracer excl
curve for special experimental conditions is known, one can infer the residence
distribution of the crystal which, in turn, gives the tracer exchange curves for all
cases. (Beyond the scope of this paper, the knowledfyésahe key to other quantitie:
as well,e.qg, the effectiveness factor of catalytic reactfons

RESULTS AND DISCUSSION

Constant Boundary Conditions

In the simplest tracer exchange experiment, the particle species in the surrol
phase is, at the initial timte= 0, suddenly switched to pure A. Hereafter, it is kept pt
e.g, by immediately removing all desorbing B patrticles. In our notation,

=0 (3o (17)

(The bar always indicates quantities referring to constant boundary conditions d¢
in this way.) From Eqs1@) and (7) we have

Q|
I
H

19

Collect. Czech. Chem. Commun. (Vol. 62) (1997)



Theory of Tracer Exchange 1001

which implies that, for constant boundary conditions, normalized and unnormsa
tracer exchange curves coincide. Inserting E@) {nto Eq. (L1) yields

t
ﬁ(t):v(t):joq;(T) dr, t20. 9

If the residence time distributiog(t) is known, we can now compute the trac
exchange curve according to Eq9). Sinced(t) depends on all the peculiarities of tt
system there is, of course, no general expression comprising all single-file syster
could think of. In ref we gave an exact derivation ft) which allows an analytical
solution for a discrete model of a single-file channel with the variable surface r
ance and the attractive particle—particle interactions. Unfortunately, the proced
numerically very expensive in real applications. Since, however, the scope of this
is only to illustrate the principal situation, we might restrict ourselves to a tyy
example. To do this, we go the other way round and start with curwés which we
had obtained previously by Monte-Carlo simulatiorhese simulations revealed th:
the tracer exchange curves subject to constant boundary conditions can, depen
the particular choice of the system parameters, be approximated by one of the f
ing analytical expressions:

6wl OmMm., tO
H=1-—S = exprr-_=i? ! 20
ySf() T[2 ; |2 pg 15 Tintrag ( )
_ 8ew1 O, tO
N=1-=S = exprr—=i2 ! 21
ynd() T[2 ;- |2 pg 12 Timra% ( )
odd
_ O t 0O
Yox) =1-expr — 0. (22
[0 ‘intra[]

(Though the index “sf” stands for single-file diffusion, the index “nd” for normal dif
sion, and the index “exp” for exponential, these indices are, first of all, solely me
labels for the respective analytical expressions.) Here we useudrterystalline mean
lifetime T, defined a8

=, (1-¥0) @3

inserting Eq. 19) into this definition gives, after some rearrangement of the inte
tion®, the expected identity
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00

Tintra:IOT ¢(T) dr . (24)

The quantityt,,,is a property of the diffusional mechanism: It is determined by
channel length, the rate of the intracrystalline motion, the interactions of the par
possible surface resistances¢®’. According to the simulations, the quantity,, al-
ready represents the main dependence of the tracer exchange curve on thes
meters; if the time axis is scaled ., the remaining differences between the cun
are rather small (see Fig. 1). Single-file systems with strong surface resistances &
approximated bye,{t), Yod(t) is, among other cases, the low-concentration limit,ya(
approximates cases where the mutual hindrance of the particles is prorfodinzesy
we might refer toy(t) as theprototypeof the tracer exchange curve of single-fi
systems subject to constant boundary conditions.

By the way,y,(t) is exactly the expression for the Fickian diffusion syStetow-
ever, this does not mean that there is only little difference between normal and ¢
file tracer exchange: The intracrystalline mean lifetime of single-file systems i
general, orders of magnitude larger than that of Fickian systems. It merely mear
the shapeof the tracer exchange curve is not very sensitive to the differences i
diffusional regimé. We again stress, however, that the expresgigt) applies not
only to Fickian processes but approximates some single-file processes as well.

With y(t) chosen, we can now determine the residence time distribution by diffe
tiation of Eq. (9),

o) = S0 29

Fe. 1

1 Analytical curves approximating the
tracer exchange curve of a single-file sy
) tem subject to constant boundary conc

8 10 i e Ve —m—— =V e e
Pinira tions: Ysts Yndr Yexp
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Figure 2 shows, in a semi-log plot, the results corresponding to the three examj
Fig. 1. In the long-time region, all curves are simple exponentiséxp(-at/ T,
(only the first terms of the sums survive); the respective faciorthe exponenti.. the
slope in the semi-log representation) differs by the meib5 : T2/12 : 1= 0.66 : 0.82 : 1
according to which of the curves is used.

While many tracer exchange experiments observe the tracer exchangg(fulzie
and Ruthvefdeveloped an experimental technique for the measurement of intracr
line diffusivity (the so-called zero length column technique, ZLC) which is base:
the determination of théime derivativeof the desorptichor tracer exchang@curve.
Since the experimental set-up ensures constant boundary conditions, it turns o
this techniqgue measures the residence time distribgtjprdirectly.

For further reference we give the Laplace transform of E5): (

b(9) =sU9) - (26)

This is true only becauseobeys, per definition, the initial conditiofit = 0) = 0.

Exponentially Varying Boundary Conditions

As pointed out by Crarfk in real experiments, it is often impossible to switch t
particle species outside the chanimstantaneouslyrom pure B to pure A. Instead, on
might assume amxponential transitionMoreover, one should allow for the case tr
the transition switches to an experimentally given rgtimetween the two species ir
stead of pure A. Thus we get

_ [0, t<0,
Pol®) = D1 - exp(-pt), t20. @7

1

¢(T)Tinlra

0.1

Fic. 2
Intracrystalline residence time distribu-
tion ¢(t) of a single-file system as ob-0.01
tained in terms of Eq.26) from the

choices ofy shown in Fig. 1=— based
onYs, ———— based ofyyq, - - based ., L
on Vexp 0 2 4 6 8 T/rinlra
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Inserting the Laplace transforpy(s) of this boundary condition into EqlL®) gives

RS ) 29

Once the tracer exchange curve subject to constant boundary conditions is kno
obtain by combining Eq26) and @8)

P9 =0~ 7S 29

According to the considerations in the previous section, we assumgtihatgiven by
Y(t) due to Eq. 20). Figure 3 shows the time dependeryt® = p(t)/g for various
values of the transition rafe (in units oft;;.). The curves have been obtained by t
numerical Laplace and inverse Laplace transformation according t@¥qT e valueg
cancels by the normalization. The case of an infinite transition Bateg, recovers
constant boundary conditions.

Linearly Increasing Boundary Conditions

Exponential boundary conditions are not the only possibility to describe the swit
processes starting at= 0. Instead, one might assume a linearly increasing rele
amount of A particles outside the crystal as it was observed in some sorption e
mentsL. If py(t) increases linearly during the time interval. Ot; up to a given fraction
g and then remains constant, one can write

l O J T T T T
y(®)
0.8
0.6
Fic. 3

Tracer exchange curve of a single-fil
0.4 system subject to exponentially varyin

boundary conditions (Eq.27)) for dif-
0.2 ferent values of the transition rate coe
' ficient B. The parameter of the

i representation is the scaled rae=
0.0 b= (BTlmra) - o, ——--- B =10,
=1,-.-.-.B=0.1

th intra
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[0, t<0|
po(l) = U, 0<t<ty, (30)
t>ts

The Laplace transformation pf(t) and Eq. 16) yields

1_ _
p9= 2 TE W g9 @1

As before, we use Eq26) to relate the considered process to that with cons
boundary conditions,

1-exp(-st) _

R e CF @2

and sely =Y, The (normalized) tracer exchange cuy = p(t)/g for different values
of the transition time; (in units oft,,,,) is plotted in Fig. 4. Foty = 0.017;,,,0r less,
the curves already coincide with thattgf O (constant boundary conditions).

Tracer Exchange from a Finite Reservoir

Constant boundary conditions could be maintained if the crystal is connected
infinite particle reservoir, which, at tinte= 0, is filled with A particles. Now we reduct
the mean total number of particles in the reservoir to a finite \Rlllet the mean total
number of particles in the crystal ke The value ofpy(t), unknown fort = 0, can be
obtained from the particle balance equation

10F
¥

0.8

Fc. 4 0.6

Tracer exchange curve of a single-file
system subject to linearly increasing g4
boundary conditions (Eq.3Q)) for dif-
ferent values of the transition tintg

The parameter of the representation is02 1
the scaled transition tim& = (t5/Tinya):
—T=0,----T=01,....T=1, ookli="
-.-.-.T=10 0
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Rpy(t) + Cp(t) =R=const. (t=0). (33

Equation 83) expresses the fact that the total number of A particles in the syistem
the sum of the numbers of A particles in the reserRgg(t), and in the crystalCp(t),
is constant for all times. This constant is given by the initial value at titne O,
namely the capacitiR of the reservoir. WritindRpy(t) we assume that the reservoir
well-stirred so that any particle in it has equal probability to be adsorbed into the
tal. This gives

Eoy t< 01
o R
or, by the Laplace transformation,
1 C
Po(9 =5~ P9 - (35

If we introduce theelative reservoir capacity

_R
v-C (36)
we obtain, on combining Eq4&) and @5), the final result
169 @7

PO =g 1 pen
In the limitt - oo, the system reaches equilibrium of the ratio of the particle spe
between crystal and reservoif, Eq. (L3). From the balance Eqg3J), we easily com-

pute

1

9% 141 (38)
As before, we get from Eq26€) and (37)
Y(s
p9= 1 (39

1+ sy(s)iv
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This equation relates, though in Laplace language, the unnormalized tracer exc
curve of the system with arbitrary reservoir capacity to that of the system with in
reservoir (constant boundary conditions). It can again be evaluated numerically. Fit
shows the resulting curvegt) = p(t)/g. Their validity was checked by the comparist
with Monte-Carlo simulations similar to that reported in’ref.

The question remains whether the finite reservoir enhances the sensitivity
shape of the exchange curve to the diffusional mechanism. Figure 6 compar:
curves for the case = 0.1 wheny(t) is chosen to be eitheg,t), Y,{t), or Vs(1).
Compared with Fig. 1, the differences between the curves are indeed much mo
nounced. This confirms the expected behaviour: The smaller the capacity of the
voir, the greater the influence of the intracrystalline processes on the reservoi
consequently, opg, which, in turn, influences the tracer exchange curve.

Tracer Exchange Between Two Different Diffusional Systems

In the previous section, the reservoir was assumed to be represented by the well
surrounding space.e., the diffusional processes within the reservoir are assumed
much faster than those within the crystal. Now we consider a more general pl
involving tracer exchange between two different crystals being in coritaat well-
stirred solution or gas phase. The experimental set-up is assumed as follows:

At t < 0, the two crystals, each surrounded by a certain space, are separate
each other. As before, both crystals are in sorption equilibrium with their respe
surroundings. Moreover, the total particle concentrations in the two surrounding s
are identical. Thénvestigated crystahnd its surrounding space are purely filled with
particles; let there be an amouf particles in the crystal arg: outside. Similarly,
the second crystal, which will be referred tor@servoir crystal contains an amouiR
of particles and its spac, all of A type.

1.0
v | 7

0.6

FGc. 5 ‘
Tracer exchange curve of a single-file ; ,|.
system coupled with a well-stirred par-
ticle reservoir of different capacity. The
parameter of the representation is the9-2

N —

relative reservoir capacity = R/C

—V 50, -————Vv=10,---.v=1, 0.0 | | . |

——.—.y = 0 1 2 3 4 5
v 0.1 minlra
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At t = 0, the separation wall between the two spaces is removed so that nov
crystals are surrounded by a common, again well-stirred, space providing a p
exchange. The changes of the ratio of the particle species within the investigated
are observed.

Let us assume that the quantitiigsp, andp, refer, as before, to the investigate
crystal while the correponding quantities referring to the reservoir crystal wil
denoted by a tilde@, p andp, For mathematical reasons, we have to defiradp,
as the relative amounts of B particles (rather than A particles) in the reservoir cry:s
its surrounding space, respectively, because only in this way wepttavep,(t) = 0 for
t < 0 which is the necessary condition for the existence of their Laplace transf
Then we can write an additional equation corresponding tolByvélid for the reser-
voir crystal:

P(S) = Po(s) B(9) - (40)

After removing the separation wall, there is a homogeneous ratio of the patrticle s
throughout the unified space, thus

- [0, t<O0,
o =1 o), €20, &

Further, the system has to obey a particle balance (constant number of A particle

RIL-BO] + (Se+ SO Poft) + Cp() =R+ Sy =const. (t20), 42

1.0
()
0.8

0.6

Fic. 6

Tracer exchange curve of a single-fil
system coupled with a particle reservo
of relative capacityw = 0.1. The different
curves correspond to the three differe
approximations considered in Fig. 1
—— based onyg, ———— based ony,g,
-+ - based 0fyg,,

0.4

02

ool
0 0.2 0.4 0.6 0.8 1.0
intra
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which yields
[0, t<0,
po) = RPO + S =Cp() (43
1 %% T
The Laplace transforms of the boundary conditions are
. 1
Bo(® = = Pl (44
and
(Se+ S0 Pu(9 =R + Sz~ Cp(S) @9
Combining Eqs 16), (40), (44), and 45) gives
1 (REO+S9 99 46

PSR + S+ %+ COO

The long-time behaviour is obtained from the balance equatRrafid the equilibrium
[1 = P(e)] = [1 = Po(e0)] = Po(*0) = p(2) =g (generalization of Eq.1Q)) to yield

R+ S,

TR+S+S+C” “n

g

In order to reduce the variety of parameters in B), (we assume that the numbe
of particles in the surrounding phase is negligible in comparison with that in the
tals, Sz + Sc << R + C, and setS; = & = 0. On using the definition equatioB6f, we
get

15960
P =S 9 + (SN 49

Moreover, both crystals shall be of equal capaéity,C orv = 1. Equation48) is still
rather general: One may choose arbitrary functions for the residence time distrib
of the two crystals. As an example, we here assume that the investigated crystal
single-file behaviour which could be described ¢fg) = sy.{STinwa) (cf. Eq. @6)),
while the reservoir crystal is assumed to behave due to normal diffusion which in

Collect. Czech. Chem. Commun. (Vol. 62) (1997)
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@(s) = Y l(S Tintrd With Tipya << Tinwa The unnormalized tracer exchange curve for t
special case is thus given as

— _Vnd(sfintra) Vif(sfrintra)
ynd(SIintra) + ysf(s'Tintra) .

p(s) (49)

This decision done, the only free parameters are the two mean residence times,
define their ratio as

lIJ — Tintra (5 0)

Tintra

Numerical results according to this example for different values of theyratie given
in Fig. 7. The curve fop = 0.01 already coincides with that of the well-stirred res
voir (cf. Fig. 5,v = 1),i.e., in this case the diffusional processes within the reservoir
fast enough that their influence is negligible. In contrast, in thegasd0, the beha-
viour is mostly determined by the reservoir rather than by the investigated cryste
Y = 1,i.e., for equal mean residence times of reservoir and crystal, the resulting
is sort of an average betweey(t) andy,(t).

Note two further consequences of the more general relatiod8q.Hrst, the well-
stirred reservoir could be described iﬂ(y) = 3(t) with the Laplace transforr@(s) =1.
Inserting this into Eq.4@) indeed recovers Eg3T). Second, in the limiv — o, Eq. @8)
approaches

P9 =1 69 (51)

1.0
(0
0.8

0.6

Fe. 7

1 Tracer exchange curve of a single-fil
crystal coupled with a crystal reservoi
undergoing normal diffusion. The
graphs correspond to different ratigs
between the mean residence times of t

0.4

024,/

0.0

. two crystals: — ¢ =0.01, - —---

intra

$=01,....¢p=1,-.—.—. y=10
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which is the Laplace transform of the tracer exchange qu(tydor constant boundary
conditions (see EQ.10)). This means that in case of an infinite reservoir (ensul
constant boundary conditions), the tracer exchange curve is independent of the
sional properties of the reservoir.

Channels that are not ldentical

The basic equatioril), derived for an individual channel, could also be applied to
array of arbitrarily many, butlentical channels. Many real systems already mentior
in the introductionge.g, a crystal with parallel faces or a membrane of constant th
ness, can be assumed to represent such an array. Other examples, however, s
bed of crystallites of different sizes, a membrane of varying thickness, or an irreg
shaped crystal, violate the condition of identity of the channels. In the following
give the generalization of the results of this paper allowing for channels thasdtau
identical

For simplicity, we assume that the lendttof the individual channels of the array |
the only parameter describing their dissimilarity. E@f be the distribution ok, i.e.,
if the crystal consists d¥l channelsM f(L) dL of them have a length betwekrand
L + d.. Let F(L) be the mean total number of particles in an individual channe
lengthL. Then we might define the concentration

oL) = ? . 52

In the general case, this concentration depends on the channelleagthin a single-
file system with attractive particle—particle interacfionet the relative amount of A
particles in a channel of length be p(t,L) while p(t) is understood to refer to the
crystal as a whole. With these quantites defined, we have

C= j ) Le(L) M f(L) dL (53)
0

for the mean total number of particles in the whole crystal while the mean numbe!
particles is

Co®) = : p(t,L) Le(L) M f(L) dL . (54)

Further, we write Eq.1(1) with explicit dependence on the lendthof the channel
considered
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1012 Rodenbeck, Karger, Hahn:

PL) = polt =D O(TL) dr . 9
By dividing Eq. 64) by Eqg. 63) and inserting Eq.56) we obtain
. fo d(t,L) Le(L) f(L) du
p®) = polt - dr (56)

j Le(L) f(L) dL
0
This suggests the definition of thesidence time distribution of the crystal
[ oL LeL) f(L) du
0

oO ="
jo Le(L) f(L) dL

(67

as the weighted average of the residence time distributions of the individual cha
This result confirms that the introduced residence time distribution is a well-de
quantity for arbitrary arrays of channels, too. As before, it may be inferred fron
tracer exchange curve obtained under known experimental conditions or, if all r
sary information is available, calculated in terms of Esjf).( Then all the results
presented in this paper may be used in their unchanged form.

SYMBOLS

B scaled transition rate (Tintra)
C capacity {:e., mean number of guest particles in sorption equilibrium) of crystal in\
tigated
c(L) concentration in channel of lengith mt
F(L) mean total number of particles in channel of lerigth
f(L) distribution (probability distribution) of in crystal, m*
equilibrium value of the ratio of two particle species in tracer exchange experi
after infinite time, see Eql8)
channel length, m
number of channels in crystal
number of sites per channel in discrete model
reservoir capacity
capacity of space surrounding crystal investigated
capacity of space surrounding reservoir crystal
independent variable of Laplace transforms, s
scaled transition timeyTintra)
time, s
time interval during which linearly increasing boundary condition varies, s
transition rate of exponentially varying boundary conditions, s
) (normalized) tracer exchange curve, see E4) (

«Q
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y(t)
st(t)

Vnd(t)
Yexd)

(S}
A
No
Aa
hY:!
v
P

p(t)
Pi
Po
Po
Po

2

T

Ti
Tintra
'Fintra
o(t)
o)
oH{(1)
Y

tracer exchange curve under constant boundary conditions, seE9E(q. (

analytical expression, see EQQ), approximatingy(t) for certain single-file systems
where mutual hindrance of particles is pronounced; in this paper chosen as pro
for single-file system

analytical expression, see EQ1L), approximatingy(t) for certain single-file systems
(e.g, with low particle density) as well as for systems undergoing normal diffusiol
analytical expression, see EG2), approximatingy(t) for systems with strong surfac
resistances

probability distribution ofx;, see Eq.4)

kind of particle occupying site see Eq.3), {Aa,As}

kind of newly adsorbed particle\{,As}

realization of/\; or Agin case of type A particle

realization ofA\; or Agin case of type B particle

relative reservoir capacity, see E§6Y

mean relative amount of A particles in crystal, see By.is time dependence give:
unnormalized tracer exchange curve

mean relative amount of B particles in reservoir crystal

probability distribution ofA;, see Eq. &)

probability distribution ofA\o, see Eq.9), acting as boundary condition

constant boundary condition, see ELj7)(

probability that particle newly adsorbed into reservoir crystal is of type B.
occupation of site, see Eq.%)

residence time, s

residence time of particle occupying sitsee Eq.2), s

intracrystalline mean lifetime, see EQ3|, s

intracrystalline mean lifetime of reservoir crystal, s

residence time distribution, see E@), (s

residence time distribution of reservoir crystat, s

probability distribution oft;, see Eq.5%), s*

ratio between mean residence times of investigated and reservoir crystals, &% E
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